
Spécialité Mathématiques Terminale

Chapitre 9 : Continuité
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Notions au programme

• Fonction continue en un point (définition par les limites), sur un intervalle. Toute

fonction dérivable est continue.

• Théorème des valeurs intermédiaires. Cas des fonctions continues strictement mono-

tones.

La continuité d’une fonction signifie intuitivement que sa courbe se trace sans ≪ trou ≫

ni ≪ saut ≫ : on peut suivre le graphe sans lever le crayon sur un intervalle donné. On la

définit rigourement avec la notion de limite.

On exploite la continuité à travers des théorèmes d’analyse comme le théorème des valeurs

intermédiaires : si une fonction est continue sur un intervalle et prend deux valeurs de

signes opposés, alors elle s’annule au moins une fois entre les deux. Cela permet de

montrer l’existence (et parfois l’unicité) de solutions d’équations, de justifier des méthodes

d’encadrement avec la calculatrice et de relier l’étude de fonctions aux problèmes concrets

de modélisation.
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I Notion de continuité

Exemple. Soit f la fonction définie sur R par : f(x) =

{
x+ 1 si x < 1

2− x si x ⩾ 1
Calculer lim

x→1−
f(x) et lim

x→1+
f(x). Que remarque-t-on ?

Définition 1. Soit f une fonction définie sur un intervalle I. Soit a ∈ I.

On dit que f est continue en a si lim
x→a

f(x) = f(a).

On dit que f est continue sur I si f est continue en tout point de I.

Remarques.

• Pour qu’une fonction soit continue en un point, il faut qu’elle soit définie en ce point.

• Un théorème sur les limites (énoncé dans le chapitre précédent) assure la continuité

des fonctions polynômes, sinus, cosinus, racine carrée, valeur absolue, ainsi que les

sommes, produits, quotients et composées de telles fonctions sur tout intervalle où

elles sont définies.

• Toutes les fonctions ne sont pas continues, bien que ce soit couramment le cas.

• Graphiquement, la continuité se traduit par le fait que la courbe représentative de

la fonction se trace de manière continue, ≪ sans lever le crayon ≫.

Théorème 2. Tout fonction dérivable est continue.

Exemple. La fonction f définie par f(x) = x3 − 4x+ cosx est continue sur R, comme

somme d’une fonction poylnôme et de la fonction cosinus, continues sur R.

Exemple. La fonction inverse est continue sur ]−∞ ; 0[ et sur ]0 ;+∞[, mais pas sur R :

elle n’est même pas définie en 0 !

Graphiquement, il y a un ≪ saut ≫ au voisinage de 0.

Certaines fonctions peuvent être définies sur R mais non continues sur R tout entier,

comme le montre l’exemple suivant.

Exemple. Soit f la fonction définie sur

R par :

f(x) =

{
x+ 1 si x < 1

2− x si x ⩾ 1

Cette fonction est définie en 1, mais elle

n’est pas continue en 1. En effet :

lim
x→1−

f(x) = 1 + 1 = 2

lim
x→1+

f(x) = 2− 1 = 1

0 1

1

saut

•

Exercice 1

✍Étudier la continuité de la fonction f définie sur R par :

f(x) =

{
x− 4 si x ⩾ 2

x− x2 si x < 2

Exemple. Un exemple de fonction non

continue ≪ bien connue ≫ est la fonction

partie entière.

La partie entière d’un réel est le plus

grand entier qui le précède. Cette fonc-

tion est définie sur R, mais discontinue

en tout entier relatif.
0 1

1

•

•

•

•

Quel est l’intérêt d’avoir une fonction continue ? Avec une telle fonction, on dispose d’un

théorème très important aux multiples applications.
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II Théorème des valeurs intermédiaires

Théorème 3. Soit f une fonction définie et continue sur un intervalle I.

Soient a, b ∈ I, tels que a < b.

Pour tout réel k compris entre f(a) et f(b), il existe un réel c compris entre a et

b tel que k = f(c).

Démonstration. Ce théorème est admis. La démonstration repose sur le principe de

dichotomie, qui sera vu en TP.

Exemple. Soit f une fonction définie et

continue sur R, telle que f(0) = −3 et

f(4) = 3.

Graĉe au TVI (Théorème des Valeurs

Intermédiaires), on peut affirmer que

l’équation f(x) = 1 admet au moins une

solution dans l’intervalle ]0 ; 4[. On ne

connait presque rien sur f , mais on sait

qu’elle est continue.

Quand x varie entre 0 et 4, f(x) varie

entre -3 et 3. La fonction étant continue,

elle ≪ passe ≫ nécessairement par 1. D’où

l’existence d’(au moins) une solution.

0 1

1

•

•

Exemple. Le TVI s’applique dans des situations très concrètes :

• Lorsqu’une voiture accélère de 0 à 100 km/h, il existe un instant pour lequel la

vitesse de la voiture est égal à 60 km/h. Cela est vrai car la vitesse de la voiture

est une fonction continue du temps. Lors de l’accélération, on passe par toutes les

vitesses entre 0 et 100 km/h.

• Si la température extérieure est de 20° à 12h00 et de 5° à 23h00, il existe un instant

entre 12h00 et 23h00 où la température est égale à 11°. C’est la continuité de la

température qui impose une nouvelle fois ce résultat.

• Encore mieux : il existe (au moins) 2 points antipodaux sur Terre où la température

est identique. (ce n’est pas si trivial, voir exercices)

Exercice 2

✍Soit f une fonction continue sur l’intervalle [−3 ; 1], et telle que f(−3) = −6

et f(1) = 4. L’équation f(x) = 0 admet-elle des solutions sur [−3 ; 1] ?

III Théorème de la bijection

Théorème 4. Soit f une fonction continue et strictement monotone sur un

intervalle [a ; b].

Pour tout réel k compris entre f(a) et f(b), il existe un unique réel c compris

entre a et b tel que k = f(c).

Remarque.

• Le théorème de la bijection est un corollaire du TVI. La condition supplémentaire

strictement monotone assure l’unicité du réel c, solution de l’équation f(x) = k.

• Le théorème s’applique encore sur un intervalle de la forme [a; b[, ]a; b], ou avec

a = −∞ et/ou b = +∞ (en remplaçant f(a) et f(b) par les limites de f en a et b).

Exemple. Soit f une fonction continue telle que :

x

Variations

de f

-2 3

22

-1-1

c

0

La fonction f est continue et strictement décroissante sur [−2 ; 3], à valeurs dans

[−1 ; 2]. Comme 0 ∈ [−1 ; 2], le théorème de la bijection assure l’existence et l’unicité

d’un réel c ∈ ]−2 ; 3[ tel que f(c) = 0.

Remarques.

• On dit alors que f réalise une bijection de [−2 ; 3] dans [−1 ; 2], ce qui signifie

qu’à tout réel k de l’intervalle [−1 ; 2], on associe un unique réel c dans l’intervalle

[−2 ; 3] tel que f(c) = k.

• La seule information que donne le théorème est que c ∈ ]−2 ; 3[. On ne peut rien dire

de plus !

• Dans un tableau de variations, une flèche traduira toujours la stricte monotonie et

la continuité de la fonction sur l’intervalle considéré.

Exercice 3

✍Soit f la fonction définie sur R par f(x) = ex − 3x.

1. Dresser le tableau de variations de f sur [0; 1].

2. Démontrer que l’équation f(x) = 0 admet une unique solution sur [0; 1].
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IV Applications

Résolution approchée d’équation

Une application importante du théorème des valeurs intermédiaires et du théorème de la

bijection est la résolution approchée d’équations.

Exemple. On considère l’équation x3 + x = 1.

On peut vérifier l’existence de solutions sur R, en étudiant la fonction f définie par

f(x) = x3 + x, ce qui nous ramène à la résolution de l’équation f(x) = 1.

• f étant une fonction polynôme, elle est de fait continue sur R.

• Pour tout réel x, f ′(x) = 3x2 + 1 > 0 : f est donc strictement croissante sur R.

• lim
x→−∞

f(x) = −∞ < 1 et lim
x→+∞

f(x) = +∞ > 1

x

f(x)

−∞ +∞

−∞−∞

+∞+∞

α

1

La fonction f réalise une bijection de R =] −∞; +∞[ dans R : comme 1 ∈] −∞; +∞[,

alors l’équation f(x) = 1 admet une unique solution α sur R.

On peut faire mieux, et encadrer α par deux entiers consécutifs : comme f(0) = 0 et

f(1) = 2, on a donc nécessairement α ∈]0; 1[.

x

f(x)

−∞ +∞

−∞−∞

+∞+∞

0

0

α

1

1

2

Exercice 4

✍Soit f(x) = x3 + x2 − x+ 1.

1. Dresser le tableau de variations de f sur R. On précisera les limites de f

en +∞ et −∞.

2. Démontrer que l’équation f(x) = 0 admet une unique solution α sur R.

3. Donner un encadrement de α par deux entiers consécutifs.

4. Donner un encadrement de α à 10−3 près à l’aide de la calculatrice.

Suite récurrente convergente

Une suite définie par une relation de récurrence de la forme un+1 = f(un) n’est pas

nécessairement convergente, mais lorsque c’est le cas, et sous réserve que f soit continue

sur un intervalle pas trop petit, alors le théorème suivant nous donne une façon de

déterminer la limite de (un).

Théorème 5. Soit (un) une suite de réels, définie par u0 ∈ R et une relation de

récurrence du type un+1 = f(un). Alors :
(un) converge vers un réel ℓ

et

f est continue en ℓ

=⇒ ℓ est solution de l’équation ℓ = f(ℓ)

Exercice 5

✍Soit (un) la suite définie par u0 = 1 et un+1 =
√
1 + un.

On admet que pour tout entier naturel n : 1 ⩽ un < un+1 < 2.

1. Justifier que (un) converge vers un réel ℓ ∈ [1; 2].

2. Déterminer la valeur de ℓ.
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